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Abstract. This paper contains a bibliography of all references central to bilevel and multilevel 
programming that the authors know of. It should be regarded as a dynamic and permanent contribution 
since all the new and appropriate references that are brought to our attention will be periodically 
added to this bibliography. Readers are invited to suggest such additions, as well as corrections or 
modifications, and to obtain a copy of the LaTeX and BibTeX files that constitute this manuscript, 
using the guidelines contained in this paper. 

To classify some of the references in this bibliography a short overview of past and current research 
in bilevel and multilevel programming is included. For those who are interested in but unfamiliar with 
the references in this area, we hope that this bibliography facilitates and encourages their research. 
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1. Introduction and Historical Notes 

Multilevel optimization problems are mathematical programs which have a sub- 

set of  their variables constrained to be an optimal solution of  other programs 

parameterized by their remaining variables. When these other programs are pure 

mathematical programs we are dealing with bilevel programming. Three level pro- 
gramming results when these other programs are themselves bilevel programs. By 

extending this idea it is possible to define multilevel programs with any number of  

levels. 

The (continuous) bilevel programming problem (BPP) is defined as: 

min F(x ,  y) 
X~y 

subject to g(x , y )  < O, 
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where y, for each value of x, is the solution of the so-called lower level problem: 

rain y(x,y)  
Y 

subject to h(x, y) < 0, 

with x E PO x, y E ~{ny, F, f : ~{nz+ny ...+ ~x, g : pnz+ny  __+ p n u  and 

h : p~x+ny __+ pal. Variables x (y) are called the upper (respectively lower) 
level variables, g(x, y) < 0 (h(x, y) _< 0) the upper (lower) level constraints 
and F(x,  y) ( f (x ,  y)) the upper (lower) level objective function. Furthermore the 
relaxed problem associated with BPP can be stated as: 

rain F(x,  y) 
x,y 

subject to g(x,y) < O, h(x,y) <0, 

and its optimal value is a lower bound for the optimal value of the BPP. Other 
important BPP definitions and notations are itemized below. 

- the relaxed feasible set (or constraint region), 
= {(x,y)  : g (x ,y)  < 0, h(x ,y)  _ 0}. 

- for each x, the lower level feasible set, 
~(x)  = {y :  h (x ,y)  < 0}. 

- for each x, the lower level reaction set (follower's feasible region), 
M(x)  = {y :  y e argmin{ f (x ,y )  : y e ~2(x)}}. 

- for each x and any value of y in M(x),  the lower level optimal value, 
= 

- the induced (inducible) region, 
I R =  {(x,y)  : (x,y) e ~, y e M(x)}.  

The induced region is the feasible set of the BPP. It is usually nonconvex and, 
in the presence of upper level constraints, can be disconnected or even empty. The 
reader is referred to T. Edmunds and J. Bard [68] for a short description of the 
conditions under which the induced region is compact and the BPP has an optimal 
solution. 

The BPP is convex if f (x ,  y) and h(x, y) are convex functions in y for all values 
of x (i.e., if the lower level problem is convex). The convex BPP has received most 
of the attention in the literature. The advantage of dealing with the convex BPP 
is that under an appropriate constraint qualification, the lower level problem can 
be replaced by its Karush-Kuhn-Tucker (KKT) conditions to obtain an equivalent 
(one-level) mathematical program. However, despite their designation, convex 
BPPs have nonconvex induced regions that can be disconnected or even empty in 
the presence of upper level constraints. There are three important classes of convex 
BPPs, namely: 

- the linear BPP, where all functions involved are affine. 
- the linear-quadratic BPP, where the lower level objective is a convex quadratic 

and all remaining functions are affine. 
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- the quadratic BPP, that differs from the linear-quadratic BPP in that the upper 
level objective is also a quadratic function. 

The original formulation for bilevel programming appeared in 1973, in a paper 
authored by J. Bracken and J. McGill [40], although is was W. Candler and R, 
Norton [49] that first used the designation bilevel and multilevel programming. 
However, it was not until the early eighties that these problems started receiving 
the attention they deserve. Motivated by the game theory of H. Stackelberg [137], 
several authors studied bilevel programming intensively and contributed to its pro- 
liferation in the mathematical programming community. At this stage, references 
such as E. Aiyoshi and K. Shimizu [1, 133, 134], J. Bard and J. Falk [10, 19], 
W. Bialas, H. Karwan and J. Shaw [33, 34, 36], W. Candler, J. Fortuny-Amat, B. 
McCarl, R. Norton and R. Townley [48, 49, 50, 51, 72] and U. Wen [147] should 
be distinguished. 

Since 1980 a significant effort has been devoted to understanding the fundamen- 
tal concepts associated with bilevel programs. At the same time several algorithms 
have been proposed for solving these problems. Important surveys of these efforts 
include those by C. Kolstad [91], G. Savard [127] and G. Anandalingam and T. 
Friesz [7]. Recently, a survey on the linear case has been written by O. Ben- 
Ayed [24]. 

2. Properties of Bilevel Programs 

It is our opinion that bilevel programming represents an interesting and rich field 
of mathematical programming and although some important results have already 
been obtained it is still a fertile area for research. In this section we list some of the 
well-known properties of the BPP. 

OPTIMALITY CONDITIONS 

Several different optimality conditions have been proposed in the literature. 
A first attempt was made by J. Bard [15] using an equivalence with a one- 

level mathematical program having an infinite and parametric set of constraints. 
However a counter example to these conditions was discovered by P. Clarke and 
A. Westerberg [59] and by A. Haurie, G. Savard and D. White [79]. Consequently, 
two algorithms based on these conditions (proposed in [12, 13] and [143]) are not 
convergent (see [127]). 

Y. Chela and M. Florian [55], S. Dempe [62, 63], Y. Ishizuka [81], J. Outra- 
ta [122], and J. Ye and D. Zhu [157] used nonsmooth analysis, whereas Z. Bi and 
P. Calamai [30] explored the relationship between the BPP and an associated exact 
penalty function, to derive other necessary and sufficient optimality conditions. 

Unlike much of the optimality analysis that has been done for (one-level) math- 
ematical programs these aforementioned contributions have mostly ignored the 
special geometry of the BPP. To partially address this void G. Savard and J. Gala- 
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vin [128] have proposed necessary optimality conditions based on the concept 
of the steepest descent direction. More directly, L. Vicente and P. Calamai [145] 
have proposed necessary and sufficient optimality conditions, based on the geom- 
etry of the BPP, that are generalizations of the well-known first and second order 
optimality conditions for mathematical programs. 

COMPLEXITY 

The difficulty and complexity of the BPP is easily confirmed by looking at what 
might be considered its simplest version, the linear BPP. Examples of linear BPPs 
with an exponential number of local minima can be generated using a technique 
proposed by P. Calamai and L. Vicente [44]. R. Jeroslow [84] showed that the linear 
BPP is NP-Hard. A few years later, J. Bard [18] and O. Ben-Ayed and C. Blair [25], 
confirmed this result and presented shorter proofs. The tightest complexity result 
is due to P. Hansen, B. Jaumard and G. Savard [76], where it is established that the 
linear BPP is strongly NP-Hard. Recently, L. Vicente, G. Savard and J. Jtidice [146] 
have shown that checking local optimality in a linear BPP is a NP-Hard problem. 

RELATED PROBLEMS 

The fact that important mathematical programs, such as minimax problems, linear 
integer, bilinear and quadratic programs, can be stated as special instances of bilevel 
programs illustrates the importance of these problems. 

Although it is a simple matter to see that a minimax problem can be rewritten 
as a BPP problem, the first authors exploiting the reduction of a bilinear program 
to a linear BPP were G. Gallo and A. Lrlkficii [75]. This result also established 
that any integer or concave quadratic program could be written as a linear BPP. 
One might think that any linear BPP can also be reduced to a bilinear program, 
thereby establishing an equivalence between these problems. However this is not 
entirely possible since the reciprocal result states that there exists a (penalized) 
bilinear program whose optimal (global) solutions are also global solutions of 
the corresponding linear BPP (see [155]). Finally, the reduction of any quadratic 
program to a quadratic BPP with bilinear objective functions is described in L. 
Vicente [144]. 

Although several authors have attempted to establish a link between two objec- 
tive optimization and bilevel programming (J. Bard [15] and G. Llnlti [143]), none 
have succeeded thus far in proposing conditions that guarantee that the optimal 
solution of a given bilevel program is Pareto-optimal or efficient [79] for both 
upper and lower level objective functions (W. Candler [47], P. Clarke and A. West- 
erberg [59], A. Haurie, G. Savard and D. White [79], P. Marcotte [104], P. Marcotte 
and G. Savard [106] and U. Wen and S. Hsu [151]). 

The static Stackelberg problem (SSP) can be posed as: 

min F(x, y) 
X 



B1LEVEL AND MULTILEVEL PROGRAMMING: A BIBLIOGRAPHY REVIEW 295 

subject to g(x,y) < 0, 

y E argmin{ f (x , y ) :  h(x,y) <_ 0}, 

and differs from the BPP in the way the upper level function is minimized. If the 
reaction set {y : y E aramin{ f (x, y) : h(x, y) < 0}} is not a singleton for some 
values of x with g(x, y) < O, then a solution of the SSP might not be a solution of 
the BPP. Comments on this problem and its relationships with game theory can be 
found in [127]. 

Other two-level optimization problems might also be confused with bilevel 
programs. That is the case with the following problem studied by T. Tanino and T. 
Ogawa [140]. 

min .T:(x)= F(x,v(x))  
x~y 

subject to 9(z)  < 0, 

where y, for each value of x, is the solution of the second optimization problem: 

min f(x ,  y) 
Y 

subject to h(x, y) < 0, 

v(x) is the optimal value of the second problem parameterized by x, and 9 : Nnx __+ 
R ~'. Under certain convexity and differentiability assumptions these authors have 
demonstrated that this problem can be treated as a one-level convex optimization 
problem and proposed a descent algorithm for its solution. 

Authors who have studied generalized bilevel programming problems include 
T. Friesz et al. [74], J. Outrata [123] and R Marcotte and D. Zhu [108] who replaced 
the BPP lower level problem with a variational inequality problem. 

3. Solution of Bilevel Programs 

The algorithms that have been proposed for solving continuous bilevel program- 
ming problems may be divided in five different classes. In most cases these algo- 
rithms can be tested and compared using the test problem generators proposed by 
R Calamai and L. Vicente [45, 44, 46] for generating linear, linear-quadratic and 
quadratic BPPs. 

EXTREME POINT ALGORITHMS 

Most of these algorithms are applied to the solution of linear BPPs. Every linear 
BPP with a finite optimal solution shares the important property that at least one 
optimal (global) solution is attained at an extreme point of the set fL This result 
was first established by W. Candler and R. Townsley [51] for linear BPPs with 
no upper level constraints and with unique lower level solutions. Afterwards J. 
Bard [14] and W. Bialas and M. Karwan [35] proved it under the assumption that 
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f~ is bounded. The result for the case where upper level constraints exist has been 
established by G. Savard [127] under no particular assumptions. We remark that 
this property is no longer valid for linear-quadratic BPPs. 

Based on this property, W. Candler and R. Townsley [51] and W. Bialas and 
M. Karwan [35] have proposed algorithms that compute global solutions of linear 
BPPs by enumerating the extreme points of f~. Whereas the former algorithm 
enumerates basis of the lower level problem, the latter, known as the "Kth-best", 
enumerates basis of the relaxed problem. Other extreme point approaches for linear 
BPPs have been proposed by Y. Chen and M. Florian [56, 58], S. Dempe [60], G. 
Papavassilopoulos [125] and H. Tuy, A. Midgalas and P. V~brand [142]. 

L. Vicente, G. Savard and J. Jtldice [146] have studied the induced regions of 
the quadratic BPP and introduced the concepts of extreme induced region points 
and extreme induced region directions. They proposed extreme point algorithms 
that compute local star minima and local minima depending on the nature of the 
upper level objective function. 

BRANCH AND BOUND ALGORITHMS 

Branch and bound methods are widely applied to convex bilevel programs. Although 
they are associated with large computational efforts they are also capable of com- 
puting global minima. Several approaches exploit the complementarity between 
the multipliers and the slack variables that arises from the KKT conditions of the 
lower level problem. That is the case of the algorithms proposed by J. Bard and 
J. Falk [19] and J. Fortuny-Amat and B. McCarl [72] for the linear case, J. Bard 
and J. Moore [20] for the linear-quadratic case and E A1-Khayyal, R. Horst and E 
Pardalos [3], J. Bard [17] and T. Edmunds and J. Bard [68] for the quadratic case. 
Using different branching strategies, E Hansen, B. Janmard and G. Savard [76] 
have proposed a branch and bound algorithm for the solution of the linear BPP that 
seems particularly efficient for the solution of medium-scale problems. 

Although little attention has been given to the case in which some variables are 
restricted to have integer values J. Bard and J. Moore [21,113] and U. Wen and Y. 
Yang [154] have proposed branch and bound procedures for the solution of integer 
linear instances of the BPP, and T. Edmunds and J. Bard [69] have introduced a 
branch and bound algorithm for the solution of the integer quadratic BPE 

COMPLEMENTARITY PIVOT ALGORITHMS 

The first complementarity pivot algorithm for solving linear BPPs was proposed 
by W. Bialas, M. Karwan and J. Shaw [36]. This algorithm cannot, as suggested 
in [35], compute global solutions of linear BPPs (see examples in [25] and [85]). 

By combining some of the ideas from the last two classes of algorithms, J. Jtidice 
and A. Faustino proposed the SLCP (sequential linear complementarity problem) 
algorithm for the computation of e-global solutions of linear ([85, 86]) and linear- 
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quadratic ([87]) BPPs. This algorithm seems quite efficient for the solution of 
medium-scale problems. 

Another complementarity pivot approach which can be classified as a modified 
simplex approach was proposed by H. 0nal [120]. 

DESCENT METHODS 

In this class we include methods incorporating descent directions that are designed 
to compute stationary points and local minima. A classical example is the steep- 
est descent direction algorithm extended to nonlinear bilevel programming by G. 
Savard and J. Gauvin [128]. Here the computation of the steepest descent direction 
for a BPP is done with the help of a linear-quadratic BPP. L. Vicente, G. Savard 
and J. J~dice [146] studied the application of this algorithm to convex bilevel pro- 
gramming, where the lower level problems are strictly convex quadratic programs, 
and proposed appropriate stepsize rules to displacements along directions in the 
induced region. 

A second classical algorithm is the one proposed by C. Kolstad and L. Las- 
don [92] for the solution of nonlinear BPPs. This algorithm consists of applying 
gradient information to the implicit optimization problem: 

min F(x, y(x)) 
X 

subjectto g(x,y(x)) < 0 

where {y(x)} is the lower level reaction set for all values of x. The authors 
introduced a local estimation of the gradient of y and applied a BFGS quasi- 
Newton algorithm to the solution of an unconstrained version of this problem. 

Another descent approach can be found in M. Florian and Y. Chen [70]. 

PENALTY FUNCTION METHODS 

Some of the methods in this class can also be classified as descent algorithms. They 
usually incorporate exact penalty functions and are limited to computing stationary 
points and local minima. See E. Aiyoshi and K. Shimizu [1, 2, 134], and Z. Bi, P. 
Calamai and A.R. Conn [31, 32] for the case where the penalty term incorporates 
the lower level objective function, and Y. Ishizuka and E. Aiyoshi [82] for the case 
where both objective functions are penalized. The reader is also referred to the 
work of P. Loridan and J. Morgan on approximation and stability results for bilevel 
programming that might be of interest for the convergence theory of these and 
other algorithms, and to Z.-Q. Luo, J.-S. Pang and S. Wu [101] for the derivation 
of an exact penalty function that only uses the square-root of the complementarity 
term associated with the lower level quadratic program as the penalty term. 

In [155], D. White and G. Anandalingam exploit the penalized bilinear version 
of a linear BPP and introduce a exact penalty function algorithm that finds a global 
solution of the linear BPP by solVing a sequence of bilinear programs. 



298 LUffS N. VICENTE AND PAUL H. CALAMAI 

4. Multilevel Programming and Applications 

As stated before, bilevel programming is a special case of multilevel programming. 
However, as described by C. Blair [38], the complexity of these problems increases 
significantly when the number of levels is greater than two. In spite of this, three 
level and multilevel programming has been studied in the literature by, among 
others, J. Bard [14], J. Bard and J. Falk [19], H. Benson [28], R. Jan and M. 
Chen [83] and U. Wen and W. Bialas [150]. 

The particular structure of bilevel and multilevel programs facilitates the for- 
mulation of a number of practical problems that involve an hierarchical decision 
making process. Among the several applications of bilevel and multilevel program- 
ming the following are noteworthy: 

- Transportation - Network design problem (L. LeBlanc and D. Boyce [94], 
O. Ben-Ayed, C. Blair, D. Boyce and L. LeBlanc [26, 27], P. Marcotte [103], 
P. Marcotte and G. Marquis [105] and S. Suh and T. Kim [138]) and trip 
demand estimation problem (M. Florian and Y. Chen [70, 71] and R.L. Tobin 
and T.L. Friesz [141]). 

- Management - Coordination of multidivisional firms (J. Bard [12]), net- 
work facility location with delivered price competition (T. Miller, T. Friesz 
and R. Tobin [111]) and credit allocation (R. Cassidy and M. Kirby and W. 
Raike [52]). 

- Planning - Application of agricultural policies (W. Candler, J. Fortuny-Amat 
and B. McCarl [48], W. Candler and R. Norton [49, 50] and H. 0nal [119]) 
and electric utility planning (A. Haurie, R. Loulou and G. Savard [78] and B. 
Hobbs and S. Nelson [80]). 

- Engineering Design - Optimal design problems (M. Kocvara and J. Outra- 
ta [89, 90] and P. Neittaanm~iki and A. Stachurski [117]). 

We believe that bilevel programming can play an important role in other branch- 
es of mathematical programming. For example, bilevel programming can provide 
a novel approach for analyzing the step selection subproblem in a trust region 
algorithm for nonlinear equality constrained optimization (see [53]), and has been 
applied to the discriminant problem [107]. 

5. How to Contribute and How to Get This Report 

The subjects covered in this bibliography review are bilevel and multilevel pro- 
gramming and Stackelberg problems when considered as optimization problems 
- usually called static Stackelberg problems. We have selected contributions in 
this area that deal with theory issues (properties, existence of solution, optimality 
conditions and so on), algorithms and numerical results, software and generation 
of test problems, applications and complexity issues. 
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References to be cited should be books, articles published in journals or special 
volumes and technical reports that are available to the broad research community. 
Conferences and seminar abstracts are not included. 

Many of the references listed in our bibliography have been cited in the text 
however for completeness we have included all qualifying references that we are 
familiar with. 

This bibliography review is updated biannually and is available via email or 
anonymous ftp. It consists of the BibTeX file bilevel-review.bib that contains the 
bibliographic entries and the LaTeX file bilevel-review.tex that constitutes this 
manuscript. In order to get these files: 

- Most preferably, using anonymous ftp: 

Compressed versions of these two files can be obtained using the proce- 
dure described below. Entries on the left are the prompts (typewriter type 
style) and example responses (bold typewriter type style) whereas those on 
the fight are comments that describe the corresponding action. 
% tip dial.uwaterloo.ca 

Name (machine:userid) : anonymous 

Password: jqpublic@domain 

f t p >  cd pub/phcalamai/bilevel-review 

f t p >  binary 

f tp>  get bilevel-review.tex.Z 

f t p >  get bilevel-review.bib.Z 

f t p >  quit 

% uncompress bilevel-review.tex.Z 

% uncompress bilevel-review.bib.Z 

% latex bilevel-review 

% bibtex bilevel-review 

% latex bilevel-review 

% latex bilevel-review 
- Less preferably, using email: 

connect to machine 

use userid anonymous 

use email address password 

move to correct directory 

set transfer type 

fetch compressed latex file 

fetch compressed bib file 

terminate ftp session 

expand latex file 

expand bib file 

create aux file 

create bbl file 

incorporate bibliography 

handle forward references 

Simply send an email message requesting bilevel-review.bib and bilevel- 
review.tex to phcalamai@dial.uwaterloo.ca 

All contributions, corrections and suggestions are welcome and should be sent 
to either of the authors' addresses or (preferably) to the email address listed above. 
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